An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil

نویسندگان

  • Clara Chew
  • Eric E. Small
  • Kristine M. Larson
چکیده

Ground-reflected global positioning system signals measured by a geodetic-quality GPS system can be used to infer temporal changes in near-surface soil moisture for the area surrounding the antenna. This technique, known as GPS-interferometric reflectometry, analyzes changes in the interference pattern of the direct and reflected signals, which are recorded in signal-to-noise ratio (SNR) data, as interferograms. Temporal fluctuations in the phase of the interferogram are indicative of changes in near-surface volumetric soil moisture content. However, SNR phase is also highly sensitive to changes in overlying vegetation, and thus, the effects of seasonal vegetation changes on the ground-reflected signal must be considered. Here a method is described for determining whether SNR data are significantly corrupted by vegetation and for correcting these effects. Absolute soil moisture content must be determined for each site using ancillary data for the residual moisture content. Accounting for vegetation effects significantly improves the agreement between GPSderived soil moisture and in situ measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GPS interferometric reflectometry: applications to surface soil moisture, snow depth, and vegetation water content in the western United States

GPS interferometric reflectometry is a new environmental sensing technique that can be used to measure near-surface soil moisture, snow depth, and vegetation water content variations. The spatial scale of this technique, ~1000 m, is intermediate to that of other in situ sensors (<1 m) and satellites (>100 km). Soil moisture and snow depth retrievals have accuracies of 0.04 m/m and 0.04 m, respe...

متن کامل

Monitoring Bare Soil Freeze-Thaw Process Using GPS-Interferometric Reflectometry: Simulation and Validation

Frozen soil and permafrost affect ecosystem diversity and productivity as well as global energy and water cycles. Although some space-based Radar techniques or ground-based sensors can monitor frozen soil and permafrost variations, there are some shortcomings and challenges. For the first time, we use GPS-Interferometric Reflectometry (GPS-IR) to monitor and investigate the bare soil freeze–tha...

متن کامل

ANN technique for the evaluation of soil moisture over bare and vegetated fields from microwave radiometer data

Retrieving information from remotely sensed data is an important task. In the present work, data of L band microwave radiometer has been used to collect the brightness temperature over bare and vegetated fields in two polarizations at different moisture levels. Artificial neural network (ANN) trained with Levenberg-Marquardt algorithm has been used to determine soil moisture from brightness tem...

متن کامل

Polarimetric Soil Moisture Retrieval at Short Wavelength

Soil moisture was assessed with quad-polarimetric TerraSAR-X and dual-polarimetric (HH/VV) TanDEM-X data from the agricultural region of Wallerfing, Germany. The investigations included a bare soil case in April 2009 (TerraSAR-X) and a time series of 04-07/2011 (TanDEM-X) to estimate soil moisture on bare and vegetated soils including different agricultural crop types at various phenological st...

متن کامل

GPS-R L1 interference signal processing for soil moisture estimation: an experimental study

Global positioning system reflectometry (GPS-R) is an emerging area of GPS applications in microwave remote sensing using multipath reflected signals. Soil moisture estimation is one of the many potential applications of the GPS-R technique. The focus of this study is on investigating the feasibility of soil moisture estimation based on GPS L1 band interference signals which can be readily capt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015